SDNUOJ-1500-哥德巴赫猜想-素数-二分
题目
Description Spring is coming, T_T. All you know Goldbach conjecture.That is to say, Every even integer greater than 2 can be expressed as the sum of two primes. Today, skywind present a new conjecture: every even integer can be expressed as the difference of two primes. To validate this conjecture, you are asked to write a program. Input The first line of input is a number n identified the count of test cases(n<10^4). There is a even number x at the next n lines. The absolute value of x is not greater than 10^6. Output For each number x tested, outputs two primes a and b at one line separated with one space where a-b=x. If more than one group can meet it, output the minimum group(of course refers b). If no primes can satisfy it, output 'FAIL'.
样例
Sample Input 3 6 10 20 Sample Output 11 5 13 3 23 3
题目分析
题意
验证哥德巴赫猜想,任一大于2的偶数都可写成两个质数之和。给出一个数N,求满足N = 素数A - 素数B
的结果。结果会有很多,因此要求B最小的结果。
思路
N = 素数A - 素数B
移项,可得:
N + 素数B = 素数A
(求B最小的情况)
因此可以利用素数筛打表,然后从最小的素数跑暴力。
即:判断 N + 素数B 是否为素数,可以在之前打的素数表中进行二分查找,如果能找到,则说明结果正确。
代码
#include <iostream> #include <cstdio> using namespace std; const int TOP = 1e6 + 100000; bool e[TOP]; int p[TOP / 5]; int pnum; void init() { e[0] = e[1] = 1; pnum = 0; for (int i = 2; i < TOP; i++) { if (e[i] == 0)p[++pnum] = i; for (int j = 1; j <= pnum && p[j] * i < TOP; j++) { e[p[j] * i] = 1; if (i % p[j] == 0)break; } } } bool binSearch(int n) { int l = 1; int r = pnum - 1; int mid = (l + r) / 2; while (l != mid) { mid = (l + r) / 2; if (p[mid] == n) { return true; } else if (p[mid] > n) { r = mid; } else { l = mid; } mid = (l + r) / 2; } return false; } int main() { init(); int T, tmp; scanf("%d", &T); while (T--) { scanf("%d", &tmp); if (tmp == 0) { printf("2 2\n"); continue; } for (int i = 1; i < pnum; i++) { if (binSearch(p[i] + tmp)) { printf("%d %d\n", p[i] + tmp, p[i]); break; } } } return 0; }